577 research outputs found

    Development of microcomputer-based mental acuity tests for repeated-measures studies

    Get PDF
    The purpose of this report is to detail the development of the Automated Performance Test System (APTS), a computer battery of mental acuity tests that can be used to assess human performance in the presence of toxic elements and environmental stressors. There were four objectives in the development of APTS. First, the technical requirements for developing APTS followed the tenets of the classical theory of mental tests which requires that tests meet set criteria like stability and reliability (the lack of which constitutes insensitivity). To be employed in the study of the exotic conditions of protracted space flight, a battery with multiple parallel forms is required. The second criteria was for the battery to have factorial multidimensionality and the third was for the battery to be sensitive to factors known to compromise performance. A fourth objective was for the tests to converge on the abilities entailed in mission specialist tasks. A series of studies is reported in which candidate APTS tests were subjected to an examination of their psychometric properties for repeated-measures testing. From this work, tests were selected that possessed the requisite metric properties of stability, reliability, and factor richness. In addition, studies are reported which demonstrate the predictive validity of the tests to holistic measures of intelligence

    Spectral methods in image segmentation: a combined approach

    Get PDF
    Indexado ISIGrouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated a good performance on this task using spectral methods that are based on the eigensolution of a similarity matrix. In this paper, we implement a variation of the existing methods that combines aspects from several of the best-known eigenvector segmentation algorithms to produce a discrete optimal solution of the relaxed continuous eigensolution

    Spreading of a density front in the K\"untz-Lavall\'ee model of porous media

    Full text link
    We analyze spreading of a density front in the K\"untz-Lavall\'ee model of porous media. In contrast to previous studies, where unusual properties of the front were attributed to anomalous diffusion, we find that the front evolution is controlled by normal diffusion and hydrodynamic flow, the latter being responsible for apparent enhancement of the front propagation speed. Our finding suggests that results of several recent experiments on porous media, where anomalous diffusion was reported based on the density front propagation analysis, should be reconsidered to verify the role of a fluid flow

    Measurement of Volumetric Flow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135278/1/jum200625101305.pd

    Growth diagram and magnetic properties of hexagonal LuFe2_2O4_4 thin films

    Get PDF
    A growth diagram of Lu-Fe-O compounds on MgO (111) substrates using pulsed laser deposition is constructed based on extensive growth experiments. The LuFe2_2O4_4 phase can only be grown in a small range of temperature and O2_2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism is observed in LuFe2_2O4_4 film and is explained in terms of the effect of the impurity h-LuFeO3_3 phase and structural defects

    Cavitation clouds created by shock scattering from bubbles during histotripsy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98656/1/JAS001888.pd

    Control of the diffracted response of a metallic Wire Array with Double Period: Experimental Demonstration

    Get PDF
    In recent papers, it has been theoretically shown that by using dual-period wire gratings, it is possible to control the relative efficiencies of the diffracted orders, regardless of the wires’ material, incident polarization and wavelength. In this Letter, we experimentally demonstrate, for the first time, that by appropriately choosing the geometrical parameters of a nanometric periodic structure, it is possible to control the optical response in the visible range. We show examples of nanostructures designed to cancel out or to intensify a particular diffraction order. Such nanostructures allow a broad control over the directionality and the intensity of the diffracted light, which makes them useful for applications such as highly directional optical nanoantennas and photonic multiplexers
    corecore